In-Hull, Removable, Depth Transducer

Models: M260, R199

CAUTION: NEVER USE SOLVENTS!
Cleaners, fuel, paint, sealants, and other products may contain strong solvents, such as acetone, which attack many plastics greatly reducing their strength.

Applications

- Fiberglass hulls only
- Recommended for high-speed boats
- Accommodates a deadrise angle up to 30°

Tools & Materials

Wrenches
- M260 3/16" Allen wrench
- M260, R199 9/16" socket or wrench

Rope
Detergent or weak solvent (such as alcohol)
Safety goggles (some installations)
Dust mask (some installations)
Disk sander (some installations)
Thin sealable plastic bag (optional)
Twist-tie
Water-based lubricant (such as K-Y® jelly) (optional)
Carpenter’s level
Pencil
Saw
Scissors
Fiberglass resin
- or silicone sealant (such as GE Silicone I or Silicone II)
Mineral oil (available at pharmacies)
- or Propylene glycol (non-toxic antifreeze/coolant)
Funnel
Zip ties

Assembling the Transducer

1. Remove the paper backing from the adhesive side of the gasket. With the adhesive side facing the plate, align the holes and edges of the gasket with the under side of the plate (see Figure 1). Press the gasket firmly into place.

2. Thread the cable through the cable hole in the gasket and plate.

 Caution: Do not over-tighten the bolts.

3. Rest the plate on the transducer with the gasket side down and align the mounting holes. Fasten the plate to the transducer.

 M260—Use the three Allen screws and three lock washers supplied. Lightly tighten with a 3/16" Allen wrench.

 R199—Use four of the hex-head bolts and lock washers supplied. Lightly tighten with a 9/16" socket or wrench.

4. Thread the cable under the handle as seen in the drawing above.

Mounting Location

About Fiberglass Hulls

Caution: The fiberglass hull below the transducer must be solid.

Since the hull absorbs acoustic energy, transmitting through the hull reduces the transducer’s performance. Fiberglass hulls are often cored in places for added strength or to reduce weight. These cored areas contain balsa wood or structural foam which are poor sound conductors. Do not locate the transducer over coring.

Figure 1. Assembling the transducer—M260 shown
Placement

Choose a location:

- Where the fiberglass is solid (no air bubbles are trapped in the fiberglass resin) and where no coring, flotation material, or dead air space is sandwiched between the inside skin and outer skin of the hull.
- Where the hull below the transducer will be in contact with the water at all times.
- Where the water flowing across the hull is smoothest with a minimum of bubbles and turbulence (especially at high speeds).
- A way from interference caused by power and radiation sources such as: the propeller(s) and shaft(s), other machinery, other echosounders, and other cables. The lower the noise level, the higher the echosounder’s gain setting that can be used.
- Where the transducer beam will not be blocked by the keel or propeller shaft(s).
- Where the deadrise angle does not exceed 30°.
- Where there is space inside the vessel for the size of the tank and removing the transducer.

Caution: Do not mount the transducer:
- Near water intake or discharge openings,
- Behind strakes, fittings, or hull irregularities.

Boat Types (see Figure 2)

- Displacement hull powerboat—Locate 1/3 aft LWL and 150–300mm (6–12") off the centerline on the side of the hull where the propeller blades are moving downward.
- Planing hull powerboat—Mount well aft, on or near the centerline, and well inboard of the first set of lifting strakes to insure that the transducer is in contact with the water at high speeds. Mount on the side of the hull where the propeller blades are moving downward.
- Outboard and I/O—Mount just forward of the engine(s).
- Inboard—Mount just ahead of the propeller(s) and shaft(s).
- Step-hull—Mount just ahead of the first step.

Test the Selected Mounting Location

Establishing a Performance Baseline

The results of this test are used as a basis of comparison to determine the best in-hull location for the transducer.

1. Take the boat to the maximum depth in which you will be operating the echosounder. If deep water is not available, find a location with at least 30m (100’).
2. Connect the transducer to the echosounder.

Caution: Never pull, carry, or hold the transducer by the cable as this may sever internal connections.

3. Tie a rope securely around the handles of the transducer (see Figure 3). Lower it over the side of the boat until the active face is submerged in the water.
4. Be sure to keep the active face of the transducer parallel to the surface of the water and fully submerged. Observe the echosounder’s performance and the depth reading.

Testing the Location

While the boat is at the same site (depth of water), test the transducer inside the hull at the mounting location. Use one of the test methods below:

A. This method is recommended if the transducer will be located near the stern and the boat has a minimum deadrise angle.

Clean away any build-up of dirt and/or grease using detergent or a weak solvent such as alcohol. Place the transducer against the hull and flood the area with bilge water to cover the surface where they touch (see Figure 4-A).

B. Warning: Always wear safety goggles and a dust mask.

This method can be used at any location. If the hull surface is not smooth, grind it with a disc sander. Place the transducer inside a thin plastic bag. Partially fill the bag with water and close it tightly with a twist-tie. Wet the surface of the hull and press the active face of the transducer against it through the bag (see Figure 4-B).

C. Warning: Always wear safety goggles and a dust mask.

This method can be used at any location. If the hull surface is not smooth, grind it with a disc sander. Coat the active face of the transducer with a water-based lubricant (such as K-Y® jelly). With a twisting motion, press the face firmly against the hull (see Figure 4-C). After testing, wipe away all traces of the lubricant from the transducer’s face.
Observe the echosounder's performance and compare it to the baseline. Look for a stable depth reading that is similar to the baseline. Compare the thickness and intensity of the bottom trace.

If the performance is close to the baseline, this is a good mounting location. Remember, some energy is lost transmitting through the hull. If the test reading differs markedly from the baseline, you will need to find another location to install the transducer.

Note: If there is no reading or it is erratic, the transducer may be positioned over coring which is absorbing the acoustic energy. Choose another location. If no other location is available, check with the boat manufacturer to be certain coring is present.

Installation

Marking & Cutting

Caution: For optimal performance, the transducer must be installed so the beam will be aimed straight down. This is accomplished by cutting the tank to match the deadrise angle of the hull.

1. When you are satisfied that the location of the transducer is optimal, place the tank up-side-down on the hull at the selected mounting location (see Figure 5). Be sure the tallest side of the tank is nearest the centerline (keel) of the hull.

Caution: Do not mark or cut the shortest side of the tank.

2. Holding a carpenter's level even with the lower corner of an angled side of the tank, draw a level line with a pencil. Repeat this process on the opposite side of the tank. Connect the two lines along the tallest side of the tank, being sure the line is level. This will be your cutting guideline.

Warning: Always wear safety goggles and a dust mask.

3. Before cutting the tank, be sure the tallest side will be closest to the centerline (keel) of the boat after the tank is installed. Using a saw, cut the three sides of the tank along the guideline that you have drawn. It may be necessary to further shape the tank to the hull to ensure a liquid tight bond.

4. The tank is provided with a cork liner to reduce sound echoes. After the tank has been cut, wrap the cork liner around the inside of the tank (see Figure 6). Butt the sides of the liner along the center of the tallest side of the tank. Note: There may be a gap between the edges which will not affect performance. Holding the cork liner 6mm (1/4") below the top of the tank, trace the bottom edge of the tank onto the liner with a pencil.

5. Remove the cork liner from the tank. Use scissors to cut the liner along the line drawn.
Bonding the Tank

Warning: Always wear safety goggles and a dust mask.

1. The hull surface to be bonded must be smooth and free of paint or any other finish. If the surface is rough, use a disk sander to smooth an area slightly larger than the tank.

2. To ensure a tight bond, remove any dust, grease, or oil from the hull surface and the bottom of the tank with a weak solvent, such as alcohol. Dry the selected area.

 Caution: The tank must be liquid-tight. Do not use an epoxy adhesive, polyurethane based sealant, or the previously recommended Boatlife® Life Seal® and 3M™ 4200.

3. Using standard fiberglass technique, glass the tank to the hull. Alternatively, apply a generous bead of silicone sealant (such as GE Silicone I or Silicone II), to the bottom edge of the tank following the manufacturer's instructions (see Figure 7). Press the tank firmly in place. Apply a second bead of sealant around the inside of the tank. Apply a third bead around the outside of the tank.

4. Allow the fiberglass resin or silicone sealant to cure. The seal must be liquid-tight.

Installing the Transducer

1. After the fiberglass resin or silicone sealant has cured around the tank, insert the cork liner (see Figure 7). Butt the edges along the center of the tallest side. Note, there may be a gap. Be sure the cork liner does not extend above the tank.

2. Following the manufacturer's directions for use, pour mineral oil or propylene glycol into the tank until it covers the exposed hull inside the tank.

3. Before installing the transducer, wipe it clean of any lubricant that was used in testing the location.

 Caution: Do not use sealant or adhesive on the gasket. To do so may break the tank when the transducer is removed.

4. Grasp the transducer by the handles and lower it into the tank (see Figure 8). There is no fore or aft to the transducer; it fits either way.

 Caution: Do not over-tighten the bolts to avoid cracking the tank.

5. Attach the transducer to the tank. **M260**—Use the four hex-head bolts and four washers supplied. Lightly tighten with a 9/16" socket or wrench. **R199**—Use the six remaining hex-head bolts and six lock washers supplied. Lightly tighten with a 9/16" socket or wrench.

6. Top-off the mineral oil or propylene glycol in the tank. Using a funnel, pour the fill-liquid through one of the fill/vent holes until the tank is full. The second hole will act as a vent. Plug both holes with the plastic plugs supplied.

 Caution: Do not remove the connector to ease cable routing. If the cable must be cut and spliced, use Airmar’s splash-proof Junction Box 33-035 and follow the instructions provided. Cutting the cable or removing the connector, except when using Airmar's junction box, will void the transducer warranty.

7. Route the cable to the echosounder being careful not to tear the cable jacket when passing it through the bulkhead(s) and other parts of the boat. To reduce electrical interference, separate the transducer cable from other electrical wiring and the engine(s).

8. Refer to your echosounder owner's manual to connect the transducer to the instrument.

Replacement Transducer & Parts

Obtain replacement parts from your marine dealer or instrument manufacturer.

- **M260 In-Hull Mounting Kit** 33-434-01
- **R199 In-Hull Mounting Kit** 33-453-01

The information needed to order a replacement Airmar transducer is printed on the cable tag. Do not remove this tag. When ordering, specify the part number, date, and frequency in kHz. For convenient reference, record this information at the top of page one.